LeetCode 329 矩阵中的最长递增路径(记忆化搜索)

题目链接:矩阵中的最长递增路径

给定一个整数矩阵,找出最长递增路径的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

示例 1:

输入: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]
] 
输出: 4 
解释: 最长递增路径为 [1, 2, 6, 9]。

示例 2:

输入: nums = 
[
  [3,4,5],
  [3,2,6],
  [2,2,1]
] 
输出: 4 
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

思路

首先定义状态。

定义:f[i][j] 表示走到 (i,j) 这个格子的最大长度。

那么枚举这个格子的上下左右,如果新的坐标 (xx,yy) 比这个格低,那么就更新答案。

f [ x ] [ y ] = m a x ( f [ x ] [ y ] , d p ( x x , y y ) + 1 ) f[x][y] = max(f[x][y], dp(xx, yy) + 1) f[x][y]=max(f[x][y],dp(xx,yy)+1)

实现的时候使用记忆化搜索来完成。

时间复杂度是: O ( n 2 ) O(n^2) O(n2)

代码

class Solution
{
  public:
    int n, m;
    vector<vector<int>> f, g;
    int go[4][2] = {-1, 0, 1, 0, 0, 1, 0, -1};
    int dp(int x, int y)
    {
        if (~f[x][y])
            return f[x][y];
        f[x][y] = 1;
        for (int i = 0; i < 4; i++)
        {
            int xx = x + go[i][0];
            int yy = y + go[i][1];
            if (xx >= 0 && xx < n && yy >= 0 && yy < m && g[xx][yy] < g[x][y])
                f[x][y] = max(f[x][y], dp(xx, yy) + 1);
        }
        return f[x][y];
    }
    int longestIncreasingPath(vector<vector<int>> &matrix)
    {
        if (matrix.empty())
            return 0;
        g = matrix;
        n = g.size(), m = g[0].size();
        f = vector<vector<int>>(n, vector<int>(m, -1));
        int res = 0;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                res = max(res, dp(i, j));
        return res;
    }
};
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页